Damon Runyon News
View By:
View By:
Ductal carcinoma in situ (DCIS), a non-invasive form of breast cancer found in the milk ducts, is a precursor to invasive breast cancer, but until recently, its progression has remained enigmatic. This is partly because standard methods of preserving tissue—as formalin-fixed paraffin-embedded (FFPE) samples—have made single-cell genetic analysis difficult.
More than 90% of the world’s population has been infected with Epstein-Barr Virus (EBV), and for most people, the infection is mild and passes in childhood. But for some, the virus persists in the body and increases the risk of certain cancers, including lymphoma, leukemia, and head and neck cancer. How exactly EBV leads to cancer, however, has until now remained poorly understood.
A team of scientists at Yale University School of Medicine, led by former Damon Runyon Innovator Jason M. Sheltzer, PhD, recently cracked a century-old scientific mystery: the role of aneuploidy, or abnormal chromosome number, in driving cancer. As far back as the 19th century, scientists looking under a microscope noticed that when cancer cells divide, the chromosomes sometimes split unequally, resulting in two aneuploid daughter cells.
Glioblastoma, the most common and aggressive form of brain cancer, is notoriously difficult to treat. Once arisen, the tumor rapidly invades healthy brain tissue, making removal by surgery nearly impossible and chemotherapy or radiation therapy success short-lived. Even immunotherapy drugs, increasingly relied upon when first lines of treatment fail, have proven ineffective, leaving glioblastoma patients with very few options. But this may change soon.
In 2018, the Foundation for the National Institutes of Health (FNIH) established the FNIH Trailblazer Prize for Clinician-Scientists to recognize “the outstanding contributions of early career clinician-scientists” whose research “translates basic scientific observations into new paradigm-shifting approaches for diagnosing, preventing, treating or curing disease.”
Chimeric antigen receptor (CAR) T therapy, in which a patient’s own immune T cells are genetically engineered to target and kill their tumor cells, have been the subject of intensive research efforts since the first patients were treated in 2011. Fueled by the promise of immune cells that can serve as a “living drug” against cancer, scientists are committed to making CAR T cells safe and effective for more patients. Their investment is warranted: after a decade in remission, those first patients to receive CAR T cells were declared “cured” of leukemia.
Adenoid cystic carcinoma (ACC) is a rare but aggressive cancer that usually develops in the salivary glands and is often diagnosed in younger adults. Because of its rarity, ACC has received relatively little attention from cancer researchers, and as a result, there are no approved therapies for the disease.
Craniopharyngiomas are a rare type of brain tumor that arise near the pituitary gland and are very difficult to treat, whether surgically or with radiation therapy, without inflicting vision loss, memory loss, or hormone disruption. Even in cases when the tumor is successfully removed, craniopharyngiomas are notorious for coming back.
If you asked a hundred people to rate a hundred movies, you would generate enough data to be able to make some predictions. Someone who enjoyed Notting Hill would likely enjoy Pretty Woman, for instance; the new Guardians of the Galaxy movie will likely be a hit with longtime Marvel fans. This is an example of a bipartite dataset, which measures interactions between two types of entries—in this case, movies and viewers—and can be used not only to predict unmeasured interactions but also to reveal the underlying rules governing a system.
At the annual meeting of the American Association for Cancer Research, held this spring in Orlando, former Damon Runyon Clinical Investigator John V. Heymach, MD, PhD, started with the bad news.