Damon Runyon News
View By:
View By:
The Damon Runyon Cancer Research Foundation held its Annual Breakfast at Cipriani 42nd Street in New York on Wednesday, June 7, 2023. The event raised over $1 million to support promising early-career scientists pursuing innovative strategies to prevent, diagnose, and treat all forms of cancer.
David M. Livingston, MD, was an internationally recognized expert on the role of oncogenes and tumor suppressor genes in breast and ovarian cancer and a beloved member of the scientific community. He served on the Board of Directors at Damon Runyon from 1992 until his death in 2021, including fourteen years as Vice Chair of Scientific Programs. David was passionate about training future generations of scientists and mentored scores of young researchers throughout his career, many of whom are now independent investigators at leading cancer research institutions.
Three scientists with exceptional promise and novel approaches to fighting cancer have been named the 2023 recipients of the Damon Runyon Physician-Scientist Training Award. The awardees were selected through a highly competitive and rigorous process by a scientific committee comprised of leading cancer researchers who are themselves physician-scientists.
The Damon Runyon Cancer Research Foundation and St. Jude Children’s Research Hospital announced a new pediatric-focused fellowship today. The initiative aims to help address the critical shortage of top young scientists who often seek more prevalent opportunities in adult cancer research or the pharmaceutical sector. The Damon Runyon–St. Jude Pediatric Cancer Research Fellowship will fund up to 25 fellowships over eight years, a $9 million investment.
Imagine you have just learned that you are genetically predisposed to developing blood cancer. Everyone acquires mutations in their blood as they age, your doctor explains, but certain mutations carry higher risk than others. When a mutation occurs in a blood stem cell and confers an evolutionary advantage, that mutant blood stem cell will give rise to a whole subpopulation of cells with the same mutation. This is known as clonal hematopoiesis (CH), and again, it is a normal age-related phenomenon.
In the context of cancer, “drug addiction” has a different meaning—counterintuitively, it’s when cancer cells, not patients, depend on continuous treatment for survival. This can happen if, after the drug target is inhibited, some compensatory signaling pathway is turned on that serves a similar function in the cancer cell. When drug treatment stops, the cell goes into “withdrawal” and this alternative pathway becomes overactive, so much so that it leads to cell death.
Due to their critical role in so many cellular functions, proteins that span the cell membrane are the target of more than half of all FDA-approved drugs. Some of these transmembrane proteins are single-pass, meaning they cross the membrane only once, while others are more complex, multipass proteins, meaning they cross the membrane in at least two places. Drugs targeting the latter are primarily small molecule inhibitors, named for their size relative to antibodies and other large proteins.
A major challenge in treating brain cancer is delivering drugs across the blood-brain barrier (BBB), the dense network of cells and blood vessels that prevents toxins and pathogens from entering the brain. Unfortunately, the BBB also bars entry to therapeutic molecules, leaving highly toxic radiation or chemotherapy treatment as the only recourse for many patients with brain cancer.
Cancer immunotherapies work by triggering the body’s immune response against tumors. Tumor cells can evade destruction by the immune system, however, by attracting helper T cells, the “peacekeepers” of the immune system. Unlike cytotoxic T cells, which attack and kill pathogens, helper T cells suppress the immune response, essentially telling killer immune cells to “stand down.” While helper T cell function is vital for preventing autoimmune flare-ups, cancer cells can exploit this function, luring the immune system into a false sense of calm when there is in fact a threat.
Glioblastomas (GBMs) are the most common—and the most aggressive—type of cancer originating in the brain. Part of the reason these tumors are so hard to treat is that the cancer cells suppress the immune cells that enter their environment. Not only can they outcompete immune cells for critical nutrients, effectively starving the immune cells, but some GBMs can even adjust their metabolism to produce metabolites that directly inhibit immune cell activity.