Damon Runyon News
View By:
View By:
Nearly all human cancers, and particularly blood cancers, involve dysregulated gene expression – the wrong genes are switched on or the right ones are switched off. The molecule responsible for switching genes on and off is called a transcription factor. Identifying which transcription factor is misbehaving and how is often the key to developing effective cancer treatments.
A new study demonstrates the staying power of the immune response generated by a personalized cancer vaccine called NeoVax, which works by targeting specific proteins on each patient’s tumor cells to activate the body's immune system against the cancer.
Pancreatic cancer is one of the most difficult forms of cancer to treat effectively. Standard courses of chemotherapy drugs often come up short for patients, leading to a dismal 5-year relative survival rate of just 10%. And while the past few years’ transformative breakthroughs in immunotherapy have drastically improved the prognosis for many patients diagnosed with other forms of cancer, most pancreatic cancers have proved frustratingly resistant to immunotherapy alone.
This year, thirteen Damon Runyon alumni were chosen as American Association for the Advancement of Science (AAAS) Fellows in honor of their invaluable contributions to science and technology.
To understand all the genetic alterations driving melanoma, Damon Runyon Clinical Investigator Eliezer Van Allen, MD, and his colleagues at Dana-Farber Cancer Institute have assembled the largest molecular dataset on this disease and used it to uncover new details that may help in diagnosis and treatment.
Damon Runyon-Rachleff Innovator Elli Papaemmanuil, PhD, and colleagues at Memorial Sloan Kettering Cancer Center have uncovered new clues that may help answer a troubling question—why do some patients develop a secondary blood cancer after receiving radiation or chemotherapy treatment for their initial cancer diagnosis?
Pancreatic cancer is particularly difficult to diagnose since people usually have no symptoms until the cancer reaches a more advanced stage or spreads to other organs. Though progress against this cancer has been slow, Damon Runyon researchers are making an impact through understanding the biology and developing novel treatments.
Researchers have conducted the biggest study ever into the path that individual blood cells take to becoming leukemia. Former Damon Runyon-Sohn Fellow Robert L. Bowman, PhD, Former Fellow Aaron D. Viny, MD, and colleagues at the Memorial Sloan Kettering Cancer Center examined how a series of stepwise mutations in normal blood cells could trigger the transformation to cancer.
Many cancer immunotherapies, drugs that activate a patient’s immune system, have emerged in recent years, but none are universally effective. To address this shortcoming, Clinical Investigator Anusha Kalbasi, MD, and colleagues at the University of California Los Angeles found a drug that activates the body's natural defenses by behaving like a virus and may uncloak certain stealthy melanoma tumors, so they can be better targeted by immunotherapy.
Former Damon Runyon Innovator Guillem Pratx, PhD, and colleagues at Stanford University have devised a way to use a common imaging technology called positron emission tomography, or PET, to watch the movement of a single cell injected into a laboratory mouse in real time.