Damon Runyon News
View By:
View By:
Bradley L. Pentelute, PhD (Damon Runyon-Rachleff Innovator '13-'15), and colleagues at Massachusetts Institute of Technology, Cambridge, used a disarmed version of the anthrax toxin to deliver two proteins known as antibody mimics, which can kill cancer cells by disrupting specific proteins inside the cells. In this study, they successfully targeted Bcr-Abl and hRaf-1, which both have known functions in cancer. This is the first demonstration of effective delivery of antibody mimics into cells, which could be applied to develop new drugs for cancer and other diseases.
Zefeng Wang (Damon Runyon Fellow '03-'06) of UNC School of Medicine, Chapel Hill, discovered that a protein crucial to the process of gene splicing, called RBM4, is drastically decreased in multiple forms of human cancer, including lung and breast cancers. This reduction in RBM4 results in altered gene expression, giving rise to cancer development and metastasis. Components of the splicing pathway could be potential targets for new cancer therapies. The study was published in the journal Cancer Cell.
Moritz F. Kircher, MD, PhD (Damon Runyon-Rachleff Innovator ‘14-‘16) and colleagues at Memorial Sloan Kettering Cancer Center, New York, developed a new handheld device (“Raman scanner”) that can accurately detect cancer cells during surgery. The device resembles a laser pointer and detects nanoprobes that mark tumor cells but not normal cells. In a mouse model of glioblastoma, the scanner enabled researchers to successfully identify and remove all malignant cells in the animals’ brains.
Emily P. Balskus, PhD (Damon Runyon-Rachleff Innovator ‘14-‘16) of Harvard University, Cambridge, has been named to MIT Technology Review’s list of “35 Innovators under 35” for her research focused on how gut bacteria use chemical reactions to survive. The list is comprised of “exceptionally talented technologists whose work has great potential to transform the world.”
Ian Y. Wong, PhD (Damon Runyon Fellow ‘10-‘13) of Brown University, Providence, and colleagues, developed a microchip that enabled cancer cells to be imaged as they migrated across a surface that mimics the tissue surrounding a tumor. They examined cells that had undergone epithelial-mesenchymal transition (EMT), a process in which epithelial cells that stick together within a tissue, change into mesenchymal cells that can disperse and migrate individually.
Gordon J. Freeman, PhD (Damon Runyon Fellow ‘79-‘81), of Harvard Medical School and Dana-Farber Cancer Institute, Boston, was named one of four recipients of the 2014 William B. Coley Award for Distinguished Research in Tumor Immunology. He is recognized for his contributions to the discovery of the programmed cell death-1 (PD-1) receptor pathway, a new immune system checkpoint that has been shown in clinical studies to be a highly promising target in cancer immunotherapy.
Nicholas E. Navin, PhD (Nadia’s Gift Foundation Damon Runyon-Rachleff Innovator '13-'15) and colleagues at M.D. Anderson Cancer Center, Houston, developed a single cell sequencing tool (NUC-SEQ) that can measure genome-wide mutations in individual cancer cells. This study revealed that different subtypes of breast cancer have varied tumor diversity, and that different tumor cells grow at dramatically different speeds. These findings may have important implications for the diagnosis and treatment of breast cancer. This work was published in the journal Nature.
Matthew L. Meyerson, MD, PhD (Damon Runyon Fellow ‘95-‘98) of Dana-Farber Cancer Institute and the Broad Institute, Cambridge, led a recent study by the NIH Cancer Genome Atlas project, which represents the most comprehensive genomic analysis of lung adenocarcinoma, a cancer that forms in the tissues near the outer parts of the lungs. Researchers identified 18 key mutations in an analysis of 230 patient lung tumors.
Andrew L. Feldman, MD (Damon Runyon Clinical Investigator ‘09-‘14), and colleagues at the Mayo Clinic, Rochester, reported that novel genetic tests can be used to determine the best treatment options for patients with anaplastic large-cell lymphoma (ALCL), a rare type of non-Hodgkin lymphoma. There are three subgroups of ALCL that have very different survival rates. These subgroups could not be differentiated by routine pathology but only with the aid of the genetic tests, which the researchers recommend giving to all patients with ALK-negative ALCL.
Jedd D. Wolchok, MD, PhD (Damon Runyon-Lilly Clinical Investigator ‘03-‘08) at Memorial Sloan Kettering Cancer Center, New York, and colleagues, reported the results of an ongoing clinical trial evaluating the safety and activity of combined immunotherapies for treatment of advanced melanoma. Nivolumab (anti-PD-1), an investigational PD-1 immune checkpoint inhibitor, and ipilimumab (anti-CTLA-4; Yervoy), were given either concurrently or sequentially to these patients. The two-year overall survival rate was 88%.