Genes that are mutated, amplified, or altered in cancer contribute directly to tumor development, maintenance, and metastasis. The Ras-MAPK signaling pathway contains two of the most frequently altered genes across all cancers. Ras-MAPK has important roles in normal development but is also commonly dysregulated in a variety of human cancers. The biochemistry of this pathway is highly complex, thus hampering drug development efforts and resulting in the inability to develop any drug that directly targets Ras-MAPK to date.
Dr. Dar is using two novel approaches to better understand the Ras-MAPK pathway. First, he is reconstructing the pathway from its individual parts, much like an engineer will construct a circuit from relatively simple components. Second, he is developing chemical tools that can perturb functional Ras-MAPK networks in the cell. Both approaches will allow him to investigate questions about how this network functions and how its dysregulation contributes to disease. Ultimately, his goal is to create new drugs that precisely disable the Ras-MAPK pathway in cancer.